TRB141 VPN

From Wiki Knowledge Base | Teltonika
This is the approved revision of this page, as well as being the most recent.
Main Page > Network products > TRB141 > TRB141 Manual > TRB141 WebUI > TRB141 VPN

Summary[edit | edit source]

Virtual Private Network (VPN) is a method of connecting multiple private networks across the Internet. VPNs can serve to achieve many different goals, but some of its main purposes are:

  • access between remote private networks;
  • data encryption;
  • anonymity when browsing the Internet.

This page is an overview of the different types of VPNs supported by TRB141 devices.

The information in this page is updated in accordance with the TRB1410_R_00.01.05 firmware version.

OpenVPN[edit | edit source]

OpenVPN is an open-source software application that implements virtual private network (VPN) techniques for creating secure point-to-point or site-to-site connections in routed or bridged configurations and remote access facilities. It is often regarded as being the most universal VPN protocol because of its flexibility, support of SSL/TLS security, multiple encryption methods, many networking features and compatibility with most OS platforms.

TRB141 devices run OpenVPN version 2.4.5.

OpenVPN client[edit | edit source]


An OpenVPN client is an entity that initiates a connection to an OpenVPN server. To create a new client instance, go to the Services → VPN → OpenVPN section, select Role: Client, enter a custom name and click the 'Add' button. An OpenVPN client instance with the given name will appear in the "OpenVPN Configuration" list.

To begin configuration, click the button that looks liek a pencil next to the client instance. Refer to the figure and table below for information on the OpenVPN client's configuration fields:

Networking rutx vpn openvpn client configuration v1.png

Field Value Description
Enable off | on; default: off Turns the OpenVPN instance on or off.
TUN/TAP TUN (tunnel) | TAP (bridged); default: TUN (tunnel) Virtual network device type.
  • TUN - a virtual point-to-point IP link which operates at the network layer (OSI layer 3), used when routing is required.
  • TAP - a virtual Ethernet adapter (switch), operates at the data link layer (OSI layer 2), used when bridging is required.
Protocol UDP | TCP; default: UDP Transfer protocol used by the OpenVPN connection.
  • Transmission Control Protocol (TCP) - most commonly used protocol in the Internet Protocol (IP) suite. It ensures the recipient will receive packets in the order they were sent by numbering, analysing response messages, checking for errors and resending them if an issue occurs. It should be used when reliability is crucial (for example, in file transfer).
  • User Datagram Protocol (UDP) - packets are sent to the recipient without error-checking or back-and-forth quality control, meaning that when packets are lost, they are gone forever. This makes it less reliable but faster than TCP; therefore, it should be used when transfer speed is crucial (for example, in video streaming, live calls).
Port integer [0..65535]; default: 1194 TCP/UDP port number used for the connection. Make sure it matches the port number specified on the server side.
NOTE: traffic on the selected port will be automatically allowed in the device's firewall rules.
LZO yes | no; default: no Turns LZO data compression on or off.
Encryption DES-CBC 64 | RC2-CBC 128 | DES-EDE-CBC 128 | DES-EDE3-CBC 192 | DESX-CBC 192 | BF-CBC 128 | RC2-40-CBC 40 | CAST5-CBC 128 | RC2-40CBC 40 | CAST5-CBC 128 | RC2-64-CBC 64| AES-128-CBC 128 | AES-192-CBC 192 | AES-256-CBC 256 | none; default: BF-CBC 128 Algorithm used for packet encryption.
Authentication TLS | Static Key | Password | TLS/Password; default: TLS Authentication mode, used to secure data sessions.
  • Static key is a secret key used for server–client authentication.
  • TLS authentication mode uses X.509 type certificates:
    • Certificate Authority (CA)
    • Client certificate
    • Client key
    All mentioned certificates can be generated using OpenVPN or Open SSL utilities on any type of host machine. One of the most popular utilities used for this purpose is called Easy-RSA.
  • Password is a simple username/password based authentication where the owner of the OpenVPN server provides the login data.
  • TLS/Password uses both TLS and username/password authentication.
TLS: TLS cipher All | DHE+RSA | Custom; default: All Packet encryption algorithm cipher.
TLS: Allowed TLS ciphers All | DHE+RSA | Custom; default: All A list of TLS ciphers accepted by this connection.
Remote host/IP address ip; default: none IP address or hostname of an OpenVPN server.
Resolve retry integer | infinite; default: infinite In case server hostname resolve fails, this field indicates the amount of time (in seconds) to retry the resolve. Specify infinite to retry indefinitely.
Keep alive two integers separated by a space; default: none Defines two time intervals: the first is used to periodically send ICMP requests to the OpenVPN server, the second one defines a time window, which is used to restart the OpenVPN service if no ICMP response is received during the specified time slice. When this value is specfiied on the OpenVPN server, it overrides the 'keep alive' values set on client instances.
Example: 10 120
Static key: Local tunnel endpoint IP ip; default: none IP address of the local OpenVPN network interface.
Static key: Remote tunnel endpoint IP ip; default: none IP address of the remote OpenVPN network (server) interface.
Remote network IP address ip; default: none LAN IP address of the remote network (server).
Remote network IP netmask netmask; default: none LAN IP subnet mask of the remote network (server).
Password: User name string; default: none Username used for authentication to the OpenVPN server.
Password: Password string; default: none Password used for authentication to the OpenVPN server.
Extra options string; default: none Extra OpenVPN options to be used by the OpenVPN instance.
TLS/Password: HMAC authentication algorithm none | SHA1 | SHA256 | SHA384 | SHA512; default: SHA1 HMAC authentication algorithm type.
TLS/Password: Additional HMAC authentication yes | no; default: no An additional layer of HMAC authentication on top of the TLS control channel to protect against DoS attacks.
TLS/Password: HMAC authentication key .key file; default: none Uploads an HMAC authentication key file.
TLS/Password: HMAC key direction 0 | 1 | none; default: 1 The value of the key direction parameter should be complementary on either side (client and server) of the connection. If one side uses 0, the other side should use 1, or both sides should omit the parameter altogether.
TLS/Password: Certificate authority .ca file; default: none Certificate authority is an entity that issues digital certificates. A digital certificate certifies the ownership of a public key by the named subject of the certificate.
TLS: Client certificate .crt file; default: none Client certificate is a type of digital certificate that is used by client systems to make authenticated requests to a remote server. Client certificates play a key role in many mutual authentication designs, providing strong assurances of a requester's identity.
TLS: Client key .key file; default: none Authenticates the client to the server and establishes precisely who they are.
TLS: Private key decryption password (optional) string; default: none A password used to decrypt the server's private key. Use only if server's .key file is encrypted with a password.
Static key: Static pre-shared key .key file; default: none Uploads a secret key file used for server–client authentication.

Additional notes:

  • Some configuration fields become available only when certain other parameters are selected. The names of the parameters are followed by a prefix that specifies the authentication type under which they become visible. Different color codes are used for different prefixes:
    • Red for Authentication: TLS
    • Purple for Authentication: Static key
    • Blue for Authentication: Password
  • After changing any of the parameters, don't forget to click the Save & Apply button located at the bottom-right side of the page.

OpenVPN server[edit | edit source]


An OpenVPN server is an entity that waits for incoming connections from OpenVPN clients. To create a new server instance, go to the Services → VPN → OpenVPN section, select Role: Server, enter a custom name and click the 'Add' button. An OpenVPN server instance with the given name will appear in the "OpenVPN Configuration" list. Only one OpenVPN server instance is allowed to be added.

A server needs to have a public IP address in order to be available from the public network (the Internet).

To begin configuration, click the button that looks like a pencil next to the server instance. Refer to the figure and table below for information on the OpenVPN server's configuration fields:

Networking rutx vpn openvpn server configuration v1.png

Field Value Description
Enable off | on; default: off Turns the OpenVPN instance on or off.
TUN/TAP TUN (tunnel) | TAP (bridged); default: TUN (tunnel) Virtual network device type.
  • TUN - a virtual point-to-point IP link which operates at the network layer (OSI layer 3), used when routing is required.
  • TAP - a virtual Ethernet adapter (switch), operates at the data link layer (OSI layer 2), used when bridging is required.
Protocol UDP | TCP; default: UDP Transfer protocol used by the OpenVPN connection.
  • Transmission Control Protocol (TCP) - most commonly used protocol in the Internet Protocol (IP) suite. It ensures the recipient will receive packets in the order they were sent by numbering, analysing response messages, checking for errors and resending them if an issue occurs. It should be used when reliability is crucial (for example, file transfer).
  • User Datagram Protocol (UDP) - packets are sent to the recipient without error-checking or back-and-forth quality control, meaning that when packets are lost, they are gone forever. This makes it less reliable but faster than TCP; therefore, it should be used when transfer speed is crucial (for example, video streaming, live calls).
Port integer [0..65535]; default: 1194 TCP/UDP port number used for the connection. Make sure it matches the port number specified on the server side.
NOTE: traffic on the selected port will be automatically allowed in the device's firewall rules.
LZO yes | no; default: no Turns LZO data compression on or off.
Encryption DES-CBC 64 | RC2-CBC 128 | DES-EDE-CBC 128 | DES-EDE3-CBC 192 | DESX-CBC 192 | BF-CBC 128 | RC2-40-CBC 40 | CAST5-CBC 128 | RC2-40CBC 40 | CAST5-CBC 128 | RC2-64-CBC 64| AES-128-CBC 128 | AES-192-CBC 192 | AES-256-CBC 256 | none; default: BF-CBC 128 Algorithm used for packet encryption.
Authentication TLS | Static Key | TLS/Password; default: TLS Authentication mode, used to secure data sessions.
  • Static key is a secret key used for server–client authentication.
  • TLS authentication mode uses X.509 type certificates:
    • Certificate Authority (CA)
    • Client certificate
    • Client key
    All mentioned certificates can be generated using OpenVPN or Open SSL utilities on any type of host machine. One of the most popular utilities used for this purpose is called Easy-RSA.
  • TLS/Password uses both TLS and username/password authentication.
Static key: Local tunnel endpoint IP ip; default: none IP address of the local OpenVPN network interface.
Static key: Remote tunnel endpoint IP ip; default: none IP address of the remote OpenVPN network (client) interface.
Static key: Remote network IP address ip; default: none LAN IP address of the remote network (client).
Static key: Remote network IP netmask netmask; default: none LAN IP subnet mask of the remote network (client).
TLS/TLS/Password: TLS cipher All | DHE+RSA | Custom; default: All Packet encryption algorithm cipher.
TLS/Password: Allowed TLS ciphers All | DHE+RSA | Custom; default: All A list of TLS ciphers accepted by this connection.
TLS/TLS/Password: Client to client yes | no; default: no Allows OpenVPN clients to communicate with each other on the VPN network.
TLS/TLS/Password: Keep alive two integers separated by a space; default: none Defines two time intervals: the first is used to periodically send ICMP requests to the OpenVPN server, the second one defines a time window, which is used to restart the OpenVPN service if no ICMP response is received during the specified time slice. When this value is specifiied on the OpenVPN server, it overrides the 'keep alive' values set on client instances.
Example: 10 120
TLS/TLS/Password: Virtual network IP address ip; default: none IP address of the OpenVPN network.
TLS/TLS/Password: Virtual network netmask netmask; default: none Subnet mask of the OpenVPN network.
TLS/TLS/Password: Push option OpenVPN options; default: none Push options are a way to "push" routes and other additional OpenVPN options to connecting clients.
TLS/TLS/Password: Allow duplicate certificates yes | no; default: no When enabled allows multiple clients to connect using the same certificates.
TLS/Password: User name string; default: none Username used for authentication to this OpenVPN server.
TLS/Password: Password string; default: none Password used for authentication to this OpenVPN server.
Static key: Static pre-shared key .key file; default: none Uploads a secret key file used for server–client authentication.
TLS/TLS/Password: Certificate authority .ca file; default: none Certificate authority is an entity that issues digital certificates. A digital certificate certifies the ownership of a public key by the named subject of the certificate.
TLS/TLS/Password: Server certificate .crt file; default: none A type of digital certificate that is used to identify the OpenVPN server.
TLS/TLS/Password: Server key .key file; default: none Authenticates clients to the server.
TLS/TLS/Password: Diffie Hellman parameters .pem file; default: none DH parameters define how OpenSSL performs the Diffie-Hellman (DH) key-exchange.
TLS/TLS/Password: CRL file (optional) .pem file | .crl file; Default: none A certificate revocation list (CRL) file is a list of certificates that have been revoked by the certificate authority (CA). It indicates which certificates are no longer acccepted by the CA and therefore cannot be authenticated to the server.

Additional notes:

  • Some configuration fields become available only when certain other parameters are selected. The names of the parameters are followed by a prefix that specifies the authentication type under which they become visible. Different color codes are used for different prefixes:
    • Red for Authentication: TLS
    • Purple for Authentication: Static key
    • Blue for Authentication: TLS/Password
  • After changing any of the parameters, don't forget to click the Save & Apply button located at the bottom-right side of the page.

TLS Clients[edit | edit source]


TLS Clients is a way to differentiate clients by their Common Names (CN), which are found in the client certificate file. It can be used to assign specific VPN addresses to corresponding clients and bind them to their LAN addresses, making the server aware of which client has which LAN IP address.

The TLS Clients section can be found in the OpenVPN Server configuration window, provided that the OpenVPN server uses TLS or TLS/Password authentication methods. To create a new TLS client, type in the new client‘s name in the text field found bellow the TLS Clients tab and click the 'Add' button. Refer to the figure and table below for information on the TLS Clients' configuration fields:

Networking rutx vpn openvpn tls clients configuration v1.png

Field Value Description
VPN instance name string; default: none Indicates which OpenVPN instance the TLS Client will be associated with. When left empty, this field is filled automatically.
Endpoint name string; default: none A custom name for the client.
Common name (CN) string; default: none Client’s Common Name (CN) found in the client certificate file.
Virtual local endpoint ip; default: none Client’s local address in the virtual network.
Virtual remote endpoint ip; default: none Client’s remote address in the virtual network.
Private network ip; default: none Client’s private network (LAN) IP address.
Private netmask ip; default: none Client’s private network (LAN) IP netmask.

GRE[edit | edit source]

Generic Routing Encapsulation (GRE) is a tunneling protocol used to establish point-to-point connections between remote private networks. GRE tunnels encapsulate data packets in order to route other protocols over IP networks.

GRE: main & tunnel settings[edit | edit source]


To create a new GRE instance, go to the Services → VPN → GRE section, enter a custom name and click the 'Add' button. A GRE instance with the given name will appear in the "GRE Configuration" list.

To begin configuration, click the button that looks like a pencil located next to the instance. Refer to the figure and table below for information on the fields located in the GRE instance configuration section.

Networking rutx vpn gre gre configuration main settings v1.png

Field Value Description
Enabled off | on; default: off Turns the GRE instance on or off.
Tunnel source network interface; default: none Network interface used to establish the GRE Tunnel.
Remote endpoint IP address ip; default: none External IP address of another GRE instance used to establish the initial connection between peers.
MTU integer; default: 1476 Sets the maximum transmission unit (MTU) size. It is the largest size of a protocol data unit (PDU) that can be transmitted in a single network layer transaction.
TTL integer [0..255]; default: 255 Sets a custom TTL (Time to Live) value for encapsulated packets. TTL is a field in the IP packet header which is initially set by the sender and decreased by 1 on each hop. When it reaches 0 it is dropped and the last host to receive the packet sends an ICMP "Time Exceeded" message back to the source.
Outbound key integer [0..65535]; default: none A key used to identify outgoing packets. This value should match the "Inbound key" value set on the opposite GRE instance or both key values should be omitted on both sides.
Inbound key integer [0..65535]; default: none A key used to identify incoming packets. This value should match the "Outbound key" value set on the opposite GRE instance or both key values should be omitted on both sides.
Don't fragment off | on; default: on When unchecked, sets the nopmtudisc option for tunnel. Can not be used together with the TTL option.
Keep alive off | on; default: off Turns "keep alive" on or off. The "keep alive" feature sends packets to the remote instance in order to determine the health of the connection. If no response is received, the device will attempt to re-establish the tunnel.
Keep alive interval integer [0..255]; default: none Frequency (in seconds) at which "keep alive" packets are sent to the remote instance.
Local GRE interface IP address ip; default: none IP address of the local GRE Tunnel network interface.
Local GRE interface netmask netmask; default: none Subnet mask of the local GRE Tunnel network interface.

GRE: routing settings[edit | edit source]


Routing settings are used to configure routes to networks that are behind the device that hosts the opposite GRE instance. To add a new route, simply click the 'Add' button. For information on configuring the route refer to the figure and table below.

Networking rutx vpn gre gre configuration routing settings v1.png

Field Value Description
Remote subnet IP address ip; default: none IP address of the network behind the device that hosts the remote GRE instance.
Remote subnet netmask netmask; default: none Subnet mask of the network behind the device that hosts the remote GRE instance.

IPsec[edit | edit source]

To create a new IPsec instance, go to the Services → VPN → IPsec section, enter a custom name and click the 'Add' button. An IPsec instance with the given name will appear in the "IPsec Configuration" list.

To begin configuration, click the button that looks like a pencil located next to the instance.

IPsec configuration: general settings[edit | edit source]


The general settings section is used to configure the main parameters of an IPsec connection. Refer to the figure and table below for information on the configuration fields located in the general settings section.

Networking rutx vpn ipsec ipsec configuration general v1.png

Field Value Description
Enable off | on; default: off Turns the IPsec instance on or off.
IKE version IKEv1 | IKEv2; default: IKEv1 Internet Key Exchange (IKE) version used for key exchange.
  • IKEv1 - more commonly used but contains known issues, for example, dealing with NAT.
  • IKEv2 - updated version with increased and improved capabilities, such as integrated NAT support, supported multihosting, deprecated exchange modes (does not use main or aggressive mode; only 4 messages required to establish a connection).
Mode Main | Aggressive; default: Main Internet Security and Key Management Protocol (ISAKMP) phase 1 exchange mode.
  • Main - performs three two-way exchanges between the initiator and the receiver (a total of 9 messages).
  • Aggressive - performs fewer exchanges than main mode (a total of 6 messages) by storing most data into the first exchange. In aggressive mode, the information is exchanged before there is a secure channel, making it less secure but faster than main mode.
Type Tunnel | Transport; default: Tunnel Type of connection.
  • Tunnel - protects internal routing information by encapsulating the entire IP packet (IP header and payload); commonly used in site-to-site VPN connections; supports NAT traversal.
  • Transport - only encapsulates IP payload data; used in client-to-site VPN connections; does not support NAT traversal; usually implemented with other tunneling protocols (for example, L2TP).
My identifier type FQDN | User FQDN | Address; default: FQDN Defines the type of identity used in user (IPsec instance) authentication.
  • FQDN - identity defined by fully qualified domain name. It is the complete domain name for a host (for example, something.somedomain.com). Only supported with IKEv2.
  • User FQDN - identity defined by fully qualified username string (for example, username@something.somedomain.com). Only supported with IKEv2.
  • Address - identity by IP address.
My identifier ip | string; default: none Defines how the user (IPsec instance) will be identified during authentication.
Tunnel: Local IP address/Subnet mask ip/netmask | default: none Local IP address and subnet mask used to determine which part of the network can be accessed in the VPN network. Netmask range [0..32]. If left empty, IP address will be selected automatically.
Left firewall off | on; default: on Adds neccessary firewall rules to allow traffic of this IPsec instance on this device.
Force encapsulation off | on; default: off Forces UDP encapsulation for ESP packets even if a "no NAT" situation is detected.
Dead Peer Detection off | on; default: off A function used during Internet Key Exchange (IKE) to detect a "dead" peer. It used to reduce traffic by minimizing the number of messages when the opposite peer in unavailable and as failover mechanism.
Dead Peer Detection: Delay (sec) integer; default: none The frequency of checking whether a peer is still availaible or not.
Dead Peer Detection: Timeout (sec) integer; default: none Time limit after which the IPsec instance will stop checking the availability of a peer and determine it to be "dead" if no response is received.
Pre shared key string; default: none A shared password used for authentication between IPsec peers before a secure channel is established.
Remote VPN endpoint host | ip; default: none IP address or hostname of the remote IPsec instance.
Tunnel: Remote IP address/subnet mask ip/netmask; default: none Remote network IP address and subnet mask used to determine which part of the network can be accessed in the VPN network. Netmask range [0..32]. This value must differ from the device’s LAN IP.
Right firewall off | on; default: on Adds neccessary firewall rules to allow traffic of from the opposite IPsec instance on this device.
Transport: Use with DMVPN off | on; default: off Adds several necessary options to make DMVPN work.

Additional notes:

  • Some configuration fields become available only when certain other parameters are selected. The names of the parameters are followed by a prefix that specifies the authentication type under which they become visible. Different color codes are used for different prefixes:
    • Red for Type: Tunnel
    • Purple for Type: Transport
    • Blue for Dead Peer Detection: Enabled
  • After changing any of the parameters, don't forget to click the Save & Apply button located at the bottom-right side of the page.

IPsec configuration: advanced settings[edit | edit source]


Currently, the advanced settings section is used only to enable WebUI access to this device for other IPsec peers:

Networking rutx vpn ipsec ipsec configuration advanced v1.png

Field Value Description
Allow WebUI access off | on; default: off Turns WebUI access for hosts in the VPN network on or off.

Phase settings[edit | edit source]


IKE (Internet Key Exchange) is a protocol used to set up security associations (SAs) for the IPsec connection. This process is required before the IPsec tunnel can be established. It is done in two phases:

Phase Mode
Phase 1
  • Establishes a secure channel between peers
  • Authenticates peers
  • Negotiates SA policy
  • Shares secret keys
  • Establishes secure tunnel for phase 2
Main mode (figure 1)
  • 6 packets exchanged
  • Identity protected during exchange
Aggressive mode (figure 2)
  • 3 packets exchanged
  • Identity information exchanged before a secure channel is established
Phase 2
  • Sets up matching IPsec SAs
  • Periodically renegotiates IPsec SAs
Quick mode
  • 3 packets exchanged
  • IPsec SA parameters (ESP/AH, SHA/MD5) established
  • SA lifetime set


Figure 1

Figure 2

Networking device vpn ipsec main mode scheme v3.png Networking device vpn ipsec aggressive mode scheme v4.png

Networking rutx vpn ipsec ipsec configuration phase v1.png

Field Value Description
Encryption algorithm DES | 3DES | AES128 | AES192 | AES256; default: 3DES Algorithm used for data encryption.
Authentication/Hash algorithm MD5 | SHA1 | SHA256 | SHA384 | SHA512; default: SHA1 Algorithm used for exchanging authentication and hash information.
DH group/PFS group MODP768 | MODP1024 | MODP1536 | MODP2048 | MODP3072 | MODP4096; default: MODP1536 Diffie-Hellman (DH) group used in the key exchange process. Higher group numbers provide more security, but take longer and use more resources to compute the key.
Lifetime integer; default: 8 hours Defines a time period after which the phase will re-initiate its exchange of information.

L2TP[edit | edit source]

In computer networking, Layer 2 Tunneling Protocol (L2TP) is a tunneling protocol used to support virtual private networks (VPNs). It is more secure than PPTP but, because it encapsulates the transferred data twice, but it is slower and uses more CPU power.

L2TP client[edit | edit source]


An L2TP client is an entity that initiates a connection to an L2TP server. To create a new client instance, go to the Services → VPN → L2TP section, select Role: Client, enter a custom name and click the 'Add' button. An L2TP client instance with the given name will appear in the "L2TP Configuration" list.

To begin configuration, click the button that looks like a pencil next to the client instance. Refer to the figure and table below for information on the L2TP client's configuration fields:

Networking trb vpn l2tp client configuration v1.png

Field Value Description
Enable off | on; default: off Turns the L2TP instance on or off.
Server ip | host; default: none IP address or hostname of an L2TP server.
Username string; default: none Username used for authentication to the L2TP server.
Password string; default: none Password used for authentication to the L2TP server.
Keep alive integer; default: none Frequency (in seconds) at which LCP echo requests are sent to the remote instance in order to determine the health of the connection.
Default route off | on; default: off When turned on, this connection will become this device's default route. This means that all traffic directed to the Internet will go through the L2TP server and the server's IP address will be seen as this device's source IP to other hosts on the Internet.

L2TP server[edit | edit source]


An L2TP server is an entity that waits for incoming connections from L2TP clients. To create a new server instance, go to the Services → VPN → L2TP section, select Role: Server, enter a custom name and click the 'Add' button. An L2TP server instance with the given name will appear in the "L2TP Configuration" list. Only one L2TP server instance is allowed to be added.

A server needs to have a public IP address in order to be available from the public network (the Internet).

To begin configuration, click the button that looks like a pencil next to the server instance. Refer to the figure and table below for information on the L2TP server's configuration fields:

Networking rutx vpn l2tp server configuration v1.png

Field Value Description
Enable off | on; default: off Turns the L2TP instance on or off.
Local IP ip; default: 192.168.0.1 IP address of this L2TP network interface.
Remote IP range begin ip; default: 192.168.0.20 L2TP IP address leases will begin from the address specified in this field.
Remote IP range end ip; default: 192.168.0.30 L2TP IP address leases will end with the address specified in this field.
User name string; default: user Username used for authentication to this L2TP server.
Password string; default: pass Password used for authentication to this L2TP server.
L2TP Client's IP ip; default: none Assigns an IP address to the client that uses the adjacent authentication info. This field is optional and if left empty the client will simply receive an IP address from the IP pool defined above.

PPTP[edit | edit source]

Point-to-Point Tunneling Protocol (PPTP) is a type of VPN protocol that uses a TCP control channel and a Generic Routing Encapsulation tunnel to encapsulate PPP packets.

PPTP client[edit | edit source]


A PPTP client is an entity that initiates a connection to a PPTP server. To create a new client instance, go to the Services → VPN → PPTP section, select Role: Client, enter a custom name and click the 'Add' button. A PPTP client instance with the given name will appear in the "PPTP Configuration" list.

To begin configuration, click the button that looks like a pencil next to the client instance. Refer to the figure and table below for information on the PPTP client's configuration fields:

Networking trb vpn pptp client configuration v1.png

Field Value Description
Enable off | on; default: off Turns the PPTP instance on or off.
Use as default gateway off | on; default: off When turned on, this connection will become this device's default route. This means that all traffic directed to the Internet will go through the PPTP server and the server's IP address will be seen as this device's source IP to other hosts on the Internet.
Client to client off | on; default: off Adds a route that makes other PPTP clients accessible within the PPTP network.
Server ip | host; default: none IP address or hostname of a PPTP server.
Username string; default: none Username used for authentication to the PPTP server.
Password string; default: none Password used for authentication to the PPTP server.

PPTP server[edit | edit source]


A PPTP server is an entity that waits for incoming connections from PPTP clients. To create a new server instance, go to the Services → VPN → PPTP section, select Role: Server, enter a custom name and click the 'Add' button. A PPTP server instance with the given name will appear in the "PPTP Configuration" list. Only one PPTP server instance is allowed to be added.

A server needs to have a public IP address in order to be available from the public network (the Internet).

To begin configuration, click the button that looks like a pencil next to the server instance. Refer to the figure and table below for information on the PPTP server's configuration fields:

Networking rutx vpn pptp server configuration v1.png

Field Value Description
Enable off | on; default: off Turns the PPTP instance on or off.
Local IP ip; default: 192.168.0.1 IP address of this PPTP network interface.
Remote IP range start ip; default: 192.168.0.20 PPTP IP address leases will begin from the address specified in this field.
Remote IP range end ip; default: 192.168.0.30 PPTP IP address leases will end with the address specified in this field.
User name string; default: user Username used for authentication to this PPTP server.
Password string; default: pass Password used for authentication to this PPTP server.
PPTP Client's IP ip; default: none Assigns an IP address to the client that uses the adjacent authentication info. This field is optional and if left empty the client will simply receive an IP address from the IP pool defined above.